275 lines
9.4 KiB
Python
275 lines
9.4 KiB
Python
#! python3.7
|
|
|
|
# Recent phrases to include in the text buffer before the current transcription.
|
|
recent_phrase_count = 8
|
|
|
|
# How real time the recording is in seconds.
|
|
record_timeout = 2
|
|
|
|
|
|
import argparse
|
|
import os
|
|
import numpy as np
|
|
import speech_recognition
|
|
import whisper
|
|
import torch
|
|
|
|
from datetime import datetime, timedelta
|
|
from queue import Queue
|
|
from time import sleep
|
|
from sys import platform
|
|
|
|
import textwrap
|
|
import difflib
|
|
|
|
import pygame
|
|
|
|
|
|
pygame_font_height = 16
|
|
pygame.init()
|
|
pygame_display_surface = pygame.display.set_mode((1280, pygame_font_height * 2))
|
|
pygame.display.set_caption("Transcription")
|
|
pygame_font = pygame.font.Font("/home/kiri/.fonts/Sigmar-Regular.ttf", pygame_font_height)
|
|
|
|
|
|
|
|
|
|
class AudioSource:
|
|
def __init__(self):
|
|
# Thread safe Queue for passing data from the threaded recording callback.
|
|
self.data_queue = Queue()
|
|
|
|
class MicrophoneAudioSource(AudioSource):
|
|
def __init__(self):
|
|
super().__init__()
|
|
|
|
self.recorder = speech_recognition.Recognizer()
|
|
self.recorder.energy_threshold = 1000
|
|
|
|
# Definitely do this, dynamic energy compensation lowers the energy
|
|
# threshold dramatically to a point where the SpeechRecognizer
|
|
# never stops recording.
|
|
self.recorder.dynamic_energy_threshold = False
|
|
|
|
self.source = speech_recognition.Microphone(sample_rate=16000)
|
|
|
|
|
|
with self.source:
|
|
self.recorder.adjust_for_ambient_noise(self.source)
|
|
|
|
def record_callback(_, audio:speech_recognition.AudioData) -> None:
|
|
"""
|
|
Threaded callback function to receive audio data when recordings finish.
|
|
audio: An AudioData containing the recorded bytes.
|
|
"""
|
|
# Grab the raw bytes and push it into the thread safe queue.
|
|
|
|
print("GOT SOME DATA!!!")
|
|
|
|
data = audio.get_raw_data()
|
|
self.data_queue.put(data)
|
|
|
|
# Create a background thread that will pass us raw audio bytes.
|
|
# We could do this manually but SpeechRecognizer provides a nice helper.
|
|
self.recorder.listen_in_background(self.source, record_callback, phrase_time_limit=record_timeout)
|
|
|
|
print("--------------------------------------------------------------")
|
|
print("Done setting up mic!")
|
|
print("--------------------------------------------------------------")
|
|
|
|
|
|
|
|
# while True:
|
|
# pygame_text_surface = pygame_font.render("Test test test", (0, 0, 0), (255, 255, 255))
|
|
# pygame_text_rect = pygame_text_surface.get_rect()
|
|
# pygame_text_rect.center = (640, 32)
|
|
# pygame_display_surface.fill((0, 0, 0))
|
|
# pygame_display_surface.blit(pygame_text_surface, pygame_text_rect)
|
|
|
|
# for event in pygame.event.get():
|
|
# if event.type == pygame.QUIT:
|
|
# pygame.quit()
|
|
|
|
# pygame.display.update()
|
|
|
|
# exit(0)
|
|
|
|
def onestepchange(start, dest):
|
|
|
|
ret = ""
|
|
|
|
for i, s in enumerate(difflib.ndiff(start, dest)):
|
|
# print(i)
|
|
# print(s)
|
|
|
|
if s[0] == '-':
|
|
return ret + start[i+1:]
|
|
|
|
if s[1] == '+':
|
|
return ret + s[-1] + start[i:]
|
|
|
|
ret = ret + s[-1]
|
|
|
|
if len(ret) > len(start):
|
|
return ret
|
|
|
|
if ret[i] != start[i]:
|
|
return ret + start[i:]
|
|
|
|
return ret
|
|
|
|
def countsteps(start, dest):
|
|
step_count = 0
|
|
while start != dest:
|
|
start = onestepchange(start, dest)
|
|
step_count += 1
|
|
return step_count
|
|
|
|
def main():
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument("--model", default="medium", help="Model to use",
|
|
choices=["tiny", "base", "small", "medium", "large"])
|
|
parser.add_argument("--non_english", action='store_true',
|
|
help="Don't use the english model.")
|
|
parser.add_argument("--energy_threshold", default=1000,
|
|
help="Energy level for mic to detect.", type=int)
|
|
parser.add_argument("--phrase_timeout", default=3,
|
|
help="How much empty space between recordings before we "
|
|
"consider it a new line in the transcription.", type=float)
|
|
if 'linux' in platform:
|
|
parser.add_argument("--default_microphone", default='pulse',
|
|
help="Default microphone name for SpeechRecognition. "
|
|
"Run this with 'list' to view available Microphones.", type=str)
|
|
args = parser.parse_args()
|
|
|
|
# The last time a recording was retrieved from the queue.
|
|
phrase_time = None
|
|
#data_queue = Queue()
|
|
# We use SpeechRecognizer to record our audio because it has a nice feature where it can detect when speech ends.
|
|
|
|
# Load / Download model
|
|
model = args.model
|
|
if args.model != "large" and not args.non_english:
|
|
model = model + ".en"
|
|
audio_model = whisper.load_model(model)
|
|
|
|
phrase_timeout = args.phrase_timeout
|
|
|
|
transcription = ['']
|
|
|
|
# Cue the user that we're ready to go.
|
|
print("Model loaded.\n")
|
|
|
|
# Rolling output text buffer.
|
|
|
|
# This is the one that animates. Stored as a single string.
|
|
rolling_output_text = ""
|
|
# This is the one that updates in big chunks at lower frequency.
|
|
# Stored as an array of phrases.
|
|
output_text = [""]
|
|
|
|
mic_audio_source = MicrophoneAudioSource()
|
|
data_queue = mic_audio_source.data_queue
|
|
|
|
# Rolling audio input buffer.
|
|
audio_data = b''
|
|
|
|
diffsize = 0
|
|
|
|
while True:
|
|
try:
|
|
|
|
for event in pygame.event.get():
|
|
if event.type == pygame.QUIT:
|
|
pygame.quit()
|
|
exit(0)
|
|
|
|
rolling_text_target = " ".join(output_text)[-160:]
|
|
if rolling_text_target != rolling_output_text:
|
|
|
|
# Chop off the start all at once. It's not needed for the animation to look good.
|
|
new_rolling_output_text = onestepchange(rolling_output_text, rolling_text_target)
|
|
while rolling_output_text.endswith(new_rolling_output_text):
|
|
new_rolling_output_text = onestepchange(new_rolling_output_text, rolling_text_target)
|
|
rolling_output_text = new_rolling_output_text
|
|
|
|
if countsteps(rolling_output_text, rolling_text_target) > 80:
|
|
rolling_output_text = rolling_text_target
|
|
|
|
print(rolling_output_text)
|
|
|
|
pygame_text_surface = pygame_font.render(rolling_output_text, (0, 0, 0), (255, 255, 255))
|
|
pygame_text_rect = pygame_text_surface.get_rect()
|
|
pygame_text_rect.center = (640, pygame_font_height)
|
|
pygame_text_rect.right = 1280
|
|
pygame_display_surface.fill((0, 0, 0))
|
|
pygame_display_surface.blit(pygame_text_surface, pygame_text_rect)
|
|
|
|
pygame.display.update()
|
|
|
|
diffsize = abs(len(rolling_output_text) - len(rolling_text_target))
|
|
|
|
else:
|
|
|
|
now = datetime.utcnow()
|
|
# Pull raw recorded audio from the queue.
|
|
if not data_queue.empty():
|
|
|
|
phrase_complete = False
|
|
# If enough time has passed between recordings, consider the phrase complete.
|
|
# Clear the current working audio buffer to start over with the new data.
|
|
#
|
|
# FIXME: Shouldn't we cut off the phrase here instead of
|
|
# waiting for later?
|
|
if phrase_time and now - phrase_time > timedelta(seconds=phrase_timeout):
|
|
phrase_complete = True
|
|
|
|
# This is the last time we received new audio data from the queue.
|
|
phrase_time = now
|
|
|
|
# Combine audio data from queue
|
|
audio_data += b''.join(data_queue.queue)
|
|
data_queue.queue.clear()
|
|
|
|
# Convert in-ram buffer to something the model can use directly without needing a temp file.
|
|
# Convert data from 16 bit wide integers to floating point with a width of 32 bits.
|
|
# Clamp the audio stream frequency to a PCM wavelength compatible default of 32768hz max.
|
|
audio_np = np.frombuffer(audio_data, dtype=np.int16).astype(np.float32) / 32768.0
|
|
|
|
# Run the transcription model, and extract the text.
|
|
result = audio_model.transcribe(audio_np, fp16=torch.cuda.is_available())
|
|
text = result['text'].strip()
|
|
|
|
# Update rolling transcription file.
|
|
|
|
# Start with all our recent-but-complete phrases.
|
|
output_text = transcription[-recent_phrase_count:]
|
|
|
|
# Append the phrase-in-progress. (TODO: Can we make this a
|
|
# different color or something?)
|
|
output_text.append(text)
|
|
|
|
# If we're done with the phrase, we can go ahead and stuff
|
|
# it into the list and clear out the current audio data
|
|
# buffer.
|
|
if phrase_complete:
|
|
|
|
# Append to full transcription.
|
|
if text != "":
|
|
transcription.append(text)
|
|
|
|
# Clear audio buffer.
|
|
audio_data = b''
|
|
|
|
# Infinite loops are bad for processors, must sleep. Also, limit the anim speed.
|
|
if diffsize > 30:
|
|
sleep(0.01)
|
|
else:
|
|
sleep(0.05)
|
|
|
|
except KeyboardInterrupt:
|
|
break
|
|
|
|
if __name__ == "__main__":
|
|
main()
|