Bloop
This commit is contained in:
parent
3540ea41d5
commit
9b176ced56
1
kiri_reqs.txt
Normal file
1
kiri_reqs.txt
Normal file
@ -0,0 +1 @@
|
||||
whisper-live tokenizers==0.20.3
|
@ -5,3 +5,5 @@ SpeechRecognition
|
||||
torch
|
||||
numpy
|
||||
git+https://github.com/openai/whisper.git
|
||||
|
||||
pygame
|
||||
|
7
requirements2.txt
Normal file
7
requirements2.txt
Normal file
@ -0,0 +1,7 @@
|
||||
setuptools
|
||||
pyaudio
|
||||
SpeechRecognition
|
||||
--extra-index-url https://download.pytorch.org/whl/rocm6.2.4
|
||||
torch
|
||||
numpy
|
||||
git+https://github.com/openai/whisper.git
|
@ -1,9 +1,16 @@
|
||||
#! python3.7
|
||||
|
||||
# Recent phrases to include in the text buffer before the current transcription.
|
||||
recent_phrase_count = 8
|
||||
|
||||
# How real time the recording is in seconds.
|
||||
record_timeout = 2
|
||||
|
||||
|
||||
import argparse
|
||||
import os
|
||||
import numpy as np
|
||||
import speech_recognition as sr
|
||||
import speech_recognition
|
||||
import whisper
|
||||
import torch
|
||||
|
||||
@ -13,6 +20,110 @@ from time import sleep
|
||||
from sys import platform
|
||||
|
||||
import textwrap
|
||||
import difflib
|
||||
|
||||
import pygame
|
||||
|
||||
|
||||
pygame_font_height = 16
|
||||
pygame.init()
|
||||
pygame_display_surface = pygame.display.set_mode((1280, pygame_font_height * 2))
|
||||
pygame.display.set_caption("Transcription")
|
||||
pygame_font = pygame.font.Font("/home/kiri/.fonts/Sigmar-Regular.ttf", pygame_font_height)
|
||||
|
||||
|
||||
|
||||
|
||||
class AudioSource:
|
||||
def __init__(self):
|
||||
# Thread safe Queue for passing data from the threaded recording callback.
|
||||
self.data_queue = Queue()
|
||||
|
||||
class MicrophoneAudioSource(AudioSource):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
|
||||
self.recorder = speech_recognition.Recognizer()
|
||||
self.recorder.energy_threshold = 1000
|
||||
|
||||
# Definitely do this, dynamic energy compensation lowers the energy
|
||||
# threshold dramatically to a point where the SpeechRecognizer
|
||||
# never stops recording.
|
||||
self.recorder.dynamic_energy_threshold = False
|
||||
|
||||
self.source = speech_recognition.Microphone(sample_rate=16000)
|
||||
|
||||
|
||||
with self.source:
|
||||
self.recorder.adjust_for_ambient_noise(self.source)
|
||||
|
||||
def record_callback(_, audio:speech_recognition.AudioData) -> None:
|
||||
"""
|
||||
Threaded callback function to receive audio data when recordings finish.
|
||||
audio: An AudioData containing the recorded bytes.
|
||||
"""
|
||||
# Grab the raw bytes and push it into the thread safe queue.
|
||||
|
||||
print("GOT SOME DATA!!!")
|
||||
|
||||
data = audio.get_raw_data()
|
||||
self.data_queue.put(data)
|
||||
|
||||
# Create a background thread that will pass us raw audio bytes.
|
||||
# We could do this manually but SpeechRecognizer provides a nice helper.
|
||||
self.recorder.listen_in_background(self.source, record_callback, phrase_time_limit=record_timeout)
|
||||
|
||||
print("--------------------------------------------------------------")
|
||||
print("Done setting up mic!")
|
||||
print("--------------------------------------------------------------")
|
||||
|
||||
|
||||
|
||||
# while True:
|
||||
# pygame_text_surface = pygame_font.render("Test test test", (0, 0, 0), (255, 255, 255))
|
||||
# pygame_text_rect = pygame_text_surface.get_rect()
|
||||
# pygame_text_rect.center = (640, 32)
|
||||
# pygame_display_surface.fill((0, 0, 0))
|
||||
# pygame_display_surface.blit(pygame_text_surface, pygame_text_rect)
|
||||
|
||||
# for event in pygame.event.get():
|
||||
# if event.type == pygame.QUIT:
|
||||
# pygame.quit()
|
||||
|
||||
# pygame.display.update()
|
||||
|
||||
# exit(0)
|
||||
|
||||
def onestepchange(start, dest):
|
||||
|
||||
ret = ""
|
||||
|
||||
for i, s in enumerate(difflib.ndiff(start, dest)):
|
||||
# print(i)
|
||||
# print(s)
|
||||
|
||||
if s[0] == '-':
|
||||
return ret + start[i+1:]
|
||||
|
||||
if s[1] == '+':
|
||||
return ret + s[-1] + start[i:]
|
||||
|
||||
ret = ret + s[-1]
|
||||
|
||||
if len(ret) > len(start):
|
||||
return ret
|
||||
|
||||
if ret[i] != start[i]:
|
||||
return ret + start[i:]
|
||||
|
||||
return ret
|
||||
|
||||
def countsteps(start, dest):
|
||||
step_count = 0
|
||||
while start != dest:
|
||||
start = onestepchange(start, dest)
|
||||
step_count += 1
|
||||
return step_count
|
||||
|
||||
def main():
|
||||
parser = argparse.ArgumentParser()
|
||||
@ -22,8 +133,6 @@ def main():
|
||||
help="Don't use the english model.")
|
||||
parser.add_argument("--energy_threshold", default=1000,
|
||||
help="Energy level for mic to detect.", type=int)
|
||||
parser.add_argument("--record_timeout", default=2,
|
||||
help="How real time the recording is in seconds.", type=float)
|
||||
parser.add_argument("--phrase_timeout", default=3,
|
||||
help="How much empty space between recordings before we "
|
||||
"consider it a new line in the transcription.", type=float)
|
||||
@ -35,33 +144,8 @@ def main():
|
||||
|
||||
# The last time a recording was retrieved from the queue.
|
||||
phrase_time = None
|
||||
# Thread safe Queue for passing data from the threaded recording callback.
|
||||
data_queue = Queue()
|
||||
#data_queue = Queue()
|
||||
# We use SpeechRecognizer to record our audio because it has a nice feature where it can detect when speech ends.
|
||||
recorder = sr.Recognizer()
|
||||
recorder.energy_threshold = args.energy_threshold
|
||||
# Definitely do this, dynamic energy compensation lowers the energy threshold dramatically to a point where the SpeechRecognizer never stops recording.
|
||||
recorder.dynamic_energy_threshold = False
|
||||
|
||||
# Important for linux users.
|
||||
# Prevents permanent application hang and crash by using the wrong Microphone
|
||||
source = None
|
||||
# if 'linux' in platform:
|
||||
# mic_name = args.default_microphone
|
||||
# if not mic_name or mic_name == 'list':
|
||||
# print("Available microphone devices are: ")
|
||||
# for index, name in enumerate(sr.Microphone.list_microphone_names()):
|
||||
# print(f"Microphone with name \"{name}\" found")
|
||||
# return
|
||||
# else:
|
||||
# for index, name in enumerate(sr.Microphone.list_microphone_names()):
|
||||
# if mic_name in name:
|
||||
# source = sr.Microphone(sample_rate=16000, device_index=index)
|
||||
# break
|
||||
# else:
|
||||
# source = sr.Microphone(sample_rate=16000)
|
||||
|
||||
source = sr.Microphone(sample_rate=16000)
|
||||
|
||||
# Load / Download model
|
||||
model = args.model
|
||||
@ -69,49 +153,80 @@ def main():
|
||||
model = model + ".en"
|
||||
audio_model = whisper.load_model(model)
|
||||
|
||||
record_timeout = args.record_timeout
|
||||
phrase_timeout = args.phrase_timeout
|
||||
|
||||
transcription = ['']
|
||||
|
||||
with source:
|
||||
recorder.adjust_for_ambient_noise(source)
|
||||
|
||||
def record_callback(_, audio:sr.AudioData) -> None:
|
||||
"""
|
||||
Threaded callback function to receive audio data when recordings finish.
|
||||
audio: An AudioData containing the recorded bytes.
|
||||
"""
|
||||
# Grab the raw bytes and push it into the thread safe queue.
|
||||
data = audio.get_raw_data()
|
||||
data_queue.put(data)
|
||||
|
||||
# Create a background thread that will pass us raw audio bytes.
|
||||
# We could do this manually but SpeechRecognizer provides a nice helper.
|
||||
recorder.listen_in_background(source, record_callback, phrase_time_limit=record_timeout)
|
||||
|
||||
# Cue the user that we're ready to go.
|
||||
print("Model loaded.\n")
|
||||
|
||||
# Rolling output text buffer.
|
||||
|
||||
# This is the one that animates. Stored as a single string.
|
||||
rolling_output_text = ""
|
||||
# This is the one that updates in big chunks at lower frequency.
|
||||
# Stored as an array of phrases.
|
||||
output_text = [""]
|
||||
|
||||
mic_audio_source = MicrophoneAudioSource()
|
||||
data_queue = mic_audio_source.data_queue
|
||||
|
||||
# Rolling audio input buffer.
|
||||
audio_data = b''
|
||||
|
||||
diffsize = 0
|
||||
|
||||
while True:
|
||||
try:
|
||||
|
||||
for event in pygame.event.get():
|
||||
if event.type == pygame.QUIT:
|
||||
pygame.quit()
|
||||
exit(0)
|
||||
|
||||
rolling_text_target = " ".join(output_text)[-160:]
|
||||
if rolling_text_target != rolling_output_text:
|
||||
|
||||
# Chop off the start all at once. It's not needed for the animation to look good.
|
||||
new_rolling_output_text = onestepchange(rolling_output_text, rolling_text_target)
|
||||
while rolling_output_text.endswith(new_rolling_output_text):
|
||||
new_rolling_output_text = onestepchange(new_rolling_output_text, rolling_text_target)
|
||||
rolling_output_text = new_rolling_output_text
|
||||
|
||||
if countsteps(rolling_output_text, rolling_text_target) > 80:
|
||||
rolling_output_text = rolling_text_target
|
||||
|
||||
print(rolling_output_text)
|
||||
|
||||
pygame_text_surface = pygame_font.render(rolling_output_text, (0, 0, 0), (255, 255, 255))
|
||||
pygame_text_rect = pygame_text_surface.get_rect()
|
||||
pygame_text_rect.center = (640, pygame_font_height)
|
||||
pygame_text_rect.right = 1280
|
||||
pygame_display_surface.fill((0, 0, 0))
|
||||
pygame_display_surface.blit(pygame_text_surface, pygame_text_rect)
|
||||
|
||||
pygame.display.update()
|
||||
|
||||
diffsize = abs(len(rolling_output_text) - len(rolling_text_target))
|
||||
|
||||
else:
|
||||
|
||||
now = datetime.utcnow()
|
||||
# Pull raw recorded audio from the queue.
|
||||
if not data_queue.empty():
|
||||
|
||||
phrase_complete = False
|
||||
# If enough time has passed between recordings, consider the phrase complete.
|
||||
# Clear the current working audio buffer to start over with the new data.
|
||||
#
|
||||
# FIXME: Shouldn't we cut off the phrase here instead of
|
||||
# waiting for later?
|
||||
if phrase_time and now - phrase_time > timedelta(seconds=phrase_timeout):
|
||||
phrase_complete = True
|
||||
|
||||
# This is the last time we received new audio data from the queue.
|
||||
phrase_time = now
|
||||
|
||||
# for d in data_queue:
|
||||
# if d > 0.5:
|
||||
# print("Got something: ", d)
|
||||
|
||||
# Combine audio data from queue
|
||||
audio_data += b''.join(data_queue.queue)
|
||||
data_queue.queue.clear()
|
||||
@ -121,55 +236,39 @@ def main():
|
||||
# Clamp the audio stream frequency to a PCM wavelength compatible default of 32768hz max.
|
||||
audio_np = np.frombuffer(audio_data, dtype=np.int16).astype(np.float32) / 32768.0
|
||||
|
||||
# Read the transcription.
|
||||
# Run the transcription model, and extract the text.
|
||||
result = audio_model.transcribe(audio_np, fp16=torch.cuda.is_available())
|
||||
text = result['text'].strip()
|
||||
|
||||
# # If we detected a pause between recordings, add a new item to our transcription.
|
||||
# # Otherwise edit the existing one.
|
||||
# if phrase_complete:
|
||||
# transcription.append(text)
|
||||
# else:
|
||||
# transcription[-1] += text
|
||||
print(text)
|
||||
|
||||
# Update rolling transcription file.
|
||||
f = open("transcription.txt", "w+")
|
||||
output_text = transcription[-4:]
|
||||
output_text.append(text)
|
||||
f.write(" ".join(output_text))
|
||||
f.close()
|
||||
|
||||
# Start with all our recent-but-complete phrases.
|
||||
output_text = transcription[-recent_phrase_count:]
|
||||
|
||||
# Append the phrase-in-progress. (TODO: Can we make this a
|
||||
# different color or something?)
|
||||
output_text.append(text)
|
||||
|
||||
# If we're done with the phrase, we can go ahead and stuff
|
||||
# it into the list and clear out the current audio data
|
||||
# buffer.
|
||||
if phrase_complete:
|
||||
|
||||
# Append to full transcription.
|
||||
if text != "":
|
||||
transcription.append(text)
|
||||
|
||||
# text += "\n"
|
||||
# f = open("transcription.txt", "w+")
|
||||
# f.write("\n".join(textwrap.wrap(text)))
|
||||
# f.close()
|
||||
|
||||
print("* Phrase complete.")
|
||||
# Clear audio buffer.
|
||||
audio_data = b''
|
||||
|
||||
|
||||
# Clear the console to reprint the updated transcription.
|
||||
# os.system('cls' if os.name=='nt' else 'clear')
|
||||
for line in transcription:
|
||||
print(line)
|
||||
# Flush stdout.
|
||||
print('', end='', flush=True)
|
||||
else:
|
||||
# Infinite loops are bad for processors, must sleep.
|
||||
# Infinite loops are bad for processors, must sleep. Also, limit the anim speed.
|
||||
if diffsize > 30:
|
||||
sleep(0.01)
|
||||
else:
|
||||
sleep(0.05)
|
||||
|
||||
except KeyboardInterrupt:
|
||||
break
|
||||
|
||||
print("\n\nTranscription:")
|
||||
for line in transcription:
|
||||
print(line)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
|
Loading…
Reference in New Issue
Block a user