Compare commits

..

No commits in common. "multi_user" and "master" have entirely different histories.

7 changed files with 140 additions and 772 deletions

34
README.md Normal file
View File

@ -0,0 +1,34 @@
# Real Time Whisper Transcription
![Demo gif](demo.gif)
This is a demo of real time speech to text with OpenAI's Whisper model. It works by constantly recording audio in a thread and concatenating the raw bytes over multiple recordings.
To install dependencies simply run
```
pip install -r requirements.txt
```
in an environment of your choosing.
Whisper also requires the command-line tool [`ffmpeg`](https://ffmpeg.org/) to be installed on your system, which is available from most package managers:
```
# on Ubuntu or Debian
sudo apt update && sudo apt install ffmpeg
# on Arch Linux
sudo pacman -S ffmpeg
# on MacOS using Homebrew (https://brew.sh/)
brew install ffmpeg
# on Windows using Chocolatey (https://chocolatey.org/)
choco install ffmpeg
# on Windows using Scoop (https://scoop.sh/)
scoop install ffmpeg
```
For more information on Whisper please see https://github.com/openai/whisper
The code in this repository is public domain.

View File

@ -1,196 +0,0 @@
#!/usr/bin/python3
import socket
import select
import time
from queue import Queue
import json
import threading
import speech_recognition
import wave
from datetime import datetime, timedelta
from pyogg.opus_decoder import OpusDecoder
#wave_out = wave.open("tmp/mic.wav", "wb")
#wave_out.setnchannels(1)
#wave_out.setframerate(16000)
#wave_out.setsampwidth(2)
class AudioSource:
def __init__(self):
# Thread safe Queue for passing data from the threaded recording
# callback.
self.data_queue = Queue()
self.time_of_last_input = datetime.utcnow()
self._data_mutex = threading.Lock()
def add_data(self, data):
with self._data_mutex:
self.time_of_last_input = datetime.utcnow()
self.data_queue.put(bytearray(data))
#wave_out.writeframes(data)
def is_done(self):
return True
# -----------------------------------------------------------------------------
# Microphone
# How real time the recording is in seconds.
record_timeout = 2
class MicrophoneAudioSource(AudioSource):
def __init__(self):
super().__init__()
self._recorder = speech_recognition.Recognizer()
self._recorder.energy_threshold = 200
# Definitely do this, dynamic energy compensation lowers the energy
# threshold dramatically to a point where the SpeechRecognizer
# never stops recording.
self._recorder.dynamic_energy_threshold = False
self._source = speech_recognition.Microphone(sample_rate=16000)
with self._source:
self._recorder.adjust_for_ambient_noise(self._source)
def record_callback(_, audio:speech_recognition.AudioData) -> None:
"""
Threaded callback function to receive audio data when recordings finish.
audio: An AudioData containing the recorded bytes.
"""
# Grab the raw bytes and push it into the thread safe queue.
data = audio.get_raw_data()
self.time_of_last_input = datetime.utcnow()
#self.data_queue.put(bytearray(data))
self.add_data(data)
# Create a background thread that will pass us raw audio bytes.
# We could do this manually but SpeechRecognizer provides a nice helper.
self._stopper = self._recorder.listen_in_background(
self._source, record_callback,
phrase_time_limit=record_timeout)
def stop(self):
assert(self._stopper)
self._stopper()
self._recorder = None
self._stopper = None
self._source = None
def is_done(self):
return self._recorder == None
# -----------------------------------------------------------------------------
# Opus stream
# For debugging
# wave_out = wave.open("wave2.wav", "wb")
# wave_out.setnchannels(1)
# wave_out.setframerate(16000)
# wave_out.setsampwidth(2)
class OpusStreamAudioSource(AudioSource):
def __init__(self, sock):
super().__init__()
self._socket = sock
self._opus_decoder = OpusDecoder()
self._opus_decoder.set_channels(1)
self._opus_decoder.set_sampling_frequency(16000)
# Fetch user info.
user_info_tmp = self._read_packet(self._socket)
self._user_info = json.loads(user_info_tmp.decode("utf-8"))
print("User connection...")
print(json.dumps(self._user_info, indent=4))
self._is_done = False
# Start input thread.
self._input_thread = threading.Thread(
target=self._input_thread_func, daemon=True)
self._input_thread.start()
def _read_packet(self, sock):
try:
input_buffer = b''
#print("Reading packet size...")
while len(input_buffer) < 4:
input_buffer = input_buffer + sock.recv(1)
if not input_buffer:
raise Exception("Failed to read size of packet.")
packet_size = int.from_bytes(input_buffer, "little")
#print("Packet size: ", packet_size)
input_buffer = b''
while len(input_buffer) < packet_size:
input_buffer = input_buffer + sock.recv(1)
if not input_buffer:
raise Exception("Failed to read packet.")
return input_buffer
except Exception as e: # FIXME: Use socket-specific exception type.
return None
def _input_thread_func(self):
print("input thread start")
try:
while not self._is_done:
next_packet = self._read_packet(self._socket)
if next_packet:
# If we don't use bytearray here to copy, we run into a weird
# exception about the memory not being writeable.
decoded_data = self._opus_decoder.decode(bytearray(next_packet))
# For debugging.
#wave_out.writeframes(decoded_data)
# We need to copy decoded_data here or we end up with
# recycled buffers in our queue, which leads to broken
# audio.
#self.data_queue.put(bytearray(decoded_data))
self.add_data(decoded_data)
else:
break
except Exception as e:
# Probably disconnected. We don't care. Just clean up.
# FIXME: Limit exception to socket errors.
print("INPUT EXCEPTION: ", e)
print("input thread done")
self._is_done = True
def stop(self):
self._is_done = True
# We won't join() the input thread because we don't want to sit around
# and wait for a packet. It'll die on its own, so whatever.
def is_done(self):
return self._is_done

BIN
demo.gif Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 34 MiB

View File

@ -1,48 +0,0 @@
import textwrap
import difflib
def onestepchange(start, dest):
ret = ""
for i, s in enumerate(difflib.ndiff(start, dest)):
#print("i: ", i)
#print("S: ", s)
# Remove a character from the start.
if s[0] == '-':
#print("ret1")
return ret + start[i+1:]
# Add a character.
if s[1] == '+':
#print("ret2")
return ret + s[-1] + start[i:]
# Keep moving through the stream.
ret = ret + s[-1]
# If we're at the length of the starting string plus one, then we've
# added our one character. Let's bounce.
if len(ret) > len(start):
#print("ret3")
return ret
if ret[i] != start[i]:
#print("ret4")
return ret + start[i:]
# Hack.
if ret == "":
return dest
#print("ret5 - ret")
return ret
def countsteps(start, dest):
step_count = 0
while start != dest:
start = onestepchange(start, dest)
step_count += 1
return step_count

View File

@ -1,8 +1,7 @@
setuptools setuptools
pyaudio pyaudio
SpeechRecognition SpeechRecognition
--extra-index-url https://download.pytorch.org/whl/rocm6.2.4 --extra-index-url https://download.pytorch.org/whl/cu116
torch torch
numpy numpy
git+https://github.com/openai/whisper.git git+https://github.com/openai/whisper.git
git+https://github.com/TeamPyOgg/PyOgg.git@4118fc40067eb475468726c6bccf1242abfc24fc

View File

@ -1,28 +1,9 @@
#! python3.7 #! python3.7
# Recent phrases to include in the text buffer before the current transcription.
recent_phrase_count = 8
# How real time the recording is in seconds.
record_timeout = 2
# Delete Discord users after a minute of no-activity.
discord_transcriber_timeout = 60 # 60
import socket
# Create socket for listening for incoming Opus audio streams from the Discord
# bot.
opus_server_socket = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
opus_server_socket.bind(("127.0.0.1", 9967))
opus_server_socket.listen()
import argparse import argparse
import os import os
import numpy as np import numpy as np
import speech_recognition import speech_recognition as sr
import whisper import whisper
import torch import torch
@ -31,153 +12,7 @@ from queue import Queue
from time import sleep from time import sleep
from sys import platform from sys import platform
import textwrap
import pygame
import wave
#from pyogg.opus import OpusEncoder
import select
import time
import json
import threading
import diffstuff
import audiosource
from transcriber import Transcriber
pygame_font_height = 32
pygame.init()
pygame_display_surface = pygame.display.set_mode((960-75, pygame_font_height * 2 * 2.5))
pygame.display.set_caption("Transcription")
pygame_font = pygame.font.Font("/home/kiri/.fonts/Sigmar-Regular.ttf", pygame_font_height)
wave_out = wave.open("wave.wav", "wb")
wave_out.setnchannels(1)
wave_out.setframerate(16000)
wave_out.setsampwidth(2)
transcribers = []
transcriber1 = Transcriber()
mic_source1 = audiosource.MicrophoneAudioSource()
transcriber1.set_source(mic_source1)
transcriber1.username = "Kiri"
transcribers.append(transcriber1)
# transcriber2 = Transcriber()
# mic_source2 = audiosource.MicrophoneAudioSource()
# transcriber2.set_source(mic_source2)
# transcriber2.username = "Kiri2"
# transcribers.append(transcriber2)
discord_transcribers_per_user_id = {}
while True:
# Check for new opus connections.
#print("Checking for new connections...")
s = select.select([opus_server_socket], [], [], 0)
if len(s[0]):
accepted_socket, addr = opus_server_socket.accept()
#print("Accepted new Opus stream: ", accepted_socket)
new_stream = audiosource.OpusStreamAudioSource(accepted_socket)
if (new_stream._user_info["userId"] in discord_transcribers_per_user_id):
discord_transcribers_per_user_id[new_stream._user_info["userId"]].set_source(new_stream)
else:
new_transcriber = Transcriber()
new_transcriber.set_source(new_stream)
discord_transcribers_per_user_id[new_stream._user_info["userId"]] = new_transcriber
new_transcriber.username = new_stream._user_info["displayName"]
if not new_transcriber in transcribers:
transcribers.append(new_transcriber)
removal_queue = []
# Run updates.
print("Running updates...")
for transcriber in transcribers:
#print("Running updates for... ", transcriber.username)
transcriber.update()
#print("Done running updates for... ", transcriber.username)
if transcriber._phrase_time + timedelta(seconds=discord_transcriber_timeout) < datetime.utcnow():
if transcriber._audio_source == None:
removal_queue.append(transcriber)
#print("Running removals...")
# Note that this will not remove them from discord_transcribers_per_user_id.
# It's probably fine, though.
#print("Running removals...")
for removal in removal_queue:
#print("Removing inactive user: ", removal.username)
transcribers.remove(removal)
# Sleep.
print("Sleeping...")
time.sleep(0.05)
#print("Rendering...")
# Do rendering.
pygame_display_surface.fill((0, 0, 0))
# Render text.
for transcriber in transcribers:
pygame_text_surface = pygame_font.render(transcriber.scrolling_text, (0, 0, 0), (255, 255, 255))
pygame_text_rect = pygame_text_surface.get_rect()
pygame_text_rect.center = (
pygame_display_surface.get_width() / 2,
pygame_font_height * (1 + transcribers.index(transcriber)))
pygame_text_rect.right = pygame_display_surface.get_width()
pygame_display_surface.blit(pygame_text_surface, pygame_text_rect)
# Render a background for the names.
fill_rect = pygame_display_surface.get_rect()
fill_rect.width = 220
fill_rect.left = 0
pygame_display_surface.fill((0, 0, 0), fill_rect)
# Render names.
for transcriber in transcribers:
username_for_display = ""
for c in transcriber.username:
if ord(c) <= 127:
username_for_display += c
pygame_username_surface = pygame_font.render(username_for_display, (0, 0, 0), (255, 255, 255))
pygame_text_rect = pygame_username_surface.get_rect()
pygame_text_rect.center = (
pygame_display_surface.get_width() / 2,
pygame_font_height * (1 + transcribers.index(transcriber)))
pygame_text_rect.left = 16
pygame_display_surface.blit(pygame_username_surface, pygame_text_rect)
pygame.display.update()
exit(0)
def main(): def main():
parser = argparse.ArgumentParser() parser = argparse.ArgumentParser()
@ -187,6 +22,8 @@ def main():
help="Don't use the english model.") help="Don't use the english model.")
parser.add_argument("--energy_threshold", default=1000, parser.add_argument("--energy_threshold", default=1000,
help="Energy level for mic to detect.", type=int) help="Energy level for mic to detect.", type=int)
parser.add_argument("--record_timeout", default=2,
help="How real time the recording is in seconds.", type=float)
parser.add_argument("--phrase_timeout", default=3, parser.add_argument("--phrase_timeout", default=3,
help="How much empty space between recordings before we " help="How much empty space between recordings before we "
"consider it a new line in the transcription.", type=float) "consider it a new line in the transcription.", type=float)
@ -198,8 +35,30 @@ def main():
# The last time a recording was retrieved from the queue. # The last time a recording was retrieved from the queue.
phrase_time = None phrase_time = None
#data_queue = Queue() # Thread safe Queue for passing data from the threaded recording callback.
data_queue = Queue()
# We use SpeechRecognizer to record our audio because it has a nice feature where it can detect when speech ends. # We use SpeechRecognizer to record our audio because it has a nice feature where it can detect when speech ends.
recorder = sr.Recognizer()
recorder.energy_threshold = args.energy_threshold
# Definitely do this, dynamic energy compensation lowers the energy threshold dramatically to a point where the SpeechRecognizer never stops recording.
recorder.dynamic_energy_threshold = False
# Important for linux users.
# Prevents permanent application hang and crash by using the wrong Microphone
if 'linux' in platform:
mic_name = args.default_microphone
if not mic_name or mic_name == 'list':
print("Available microphone devices are: ")
for index, name in enumerate(sr.Microphone.list_microphone_names()):
print(f"Microphone with name \"{name}\" found")
return
else:
for index, name in enumerate(sr.Microphone.list_microphone_names()):
if mic_name in name:
source = sr.Microphone(sample_rate=16000, device_index=index)
break
else:
source = sr.Microphone(sample_rate=16000)
# Load / Download model # Load / Download model
model = args.model model = args.model
@ -207,123 +66,107 @@ def main():
model = model + ".en" model = model + ".en"
audio_model = whisper.load_model(model) audio_model = whisper.load_model(model)
record_timeout = args.record_timeout
phrase_timeout = args.phrase_timeout phrase_timeout = args.phrase_timeout
transcription = [''] transcription = ['']
with source:
recorder.adjust_for_ambient_noise(source)
def record_callback(_, audio:sr.AudioData) -> None:
"""
Threaded callback function to receive audio data when recordings finish.
audio: An AudioData containing the recorded bytes.
"""
# Grab the raw bytes and push it into the thread safe queue.
data = audio.get_raw_data()
data_queue.put(data)
# Create a background thread that will pass us raw audio bytes.
# We could do this manually but SpeechRecognizer provides a nice helper.
recorder.listen_in_background(source, record_callback, phrase_time_limit=record_timeout)
# Cue the user that we're ready to go. # Cue the user that we're ready to go.
print("Model loaded.\n") print("Model loaded.\n")
# Rolling output text buffer.
# This is the one that animates. Stored as a single string.
rolling_output_text = ""
# This is the one that updates in big chunks at lower frequency.
# Stored as an array of phrases.
output_text = [""]
mic_audio_source = MicrophoneAudioSource()
mic_audio_source.start()
data_queue = mic_audio_source.data_queue
# Rolling audio input buffer.
audio_data = b'' audio_data = b''
diffsize = 0
while True: while True:
try: try:
now = datetime.utcnow()
# Pull raw recorded audio from the queue.
if not data_queue.empty():
phrase_complete = False
# If enough time has passed between recordings, consider the phrase complete.
# Clear the current working audio buffer to start over with the new data.
if phrase_time and now - phrase_time > timedelta(seconds=phrase_timeout):
phrase_complete = True
# This is the last time we received new audio data from the queue.
phrase_time = now
for event in pygame.event.get(): # for d in data_queue:
if event.type == pygame.QUIT: # if d > 0.5:
pygame.quit() # print("Got something: ", d)
exit(0)
rolling_text_target = " ".join(output_text)[-160:] # Combine audio data from queue
if rolling_text_target != rolling_output_text: audio_data += b''.join(data_queue.queue)
data_queue.queue.clear()
# Chop off the start all at once. It's not needed for the animation to look good. # Convert in-ram buffer to something the model can use directly without needing a temp file.
new_rolling_output_text = onestepchange(rolling_output_text, rolling_text_target) # Convert data from 16 bit wide integers to floating point with a width of 32 bits.
while rolling_output_text.endswith(new_rolling_output_text): # Clamp the audio stream frequency to a PCM wavelength compatible default of 32768hz max.
new_rolling_output_text = onestepchange(new_rolling_output_text, rolling_text_target) audio_np = np.frombuffer(audio_data, dtype=np.int16).astype(np.float32) / 32768.0
rolling_output_text = new_rolling_output_text
if countsteps(rolling_output_text, rolling_text_target) > 80: # Read the transcription.
rolling_output_text = rolling_text_target result = audio_model.transcribe(audio_np, fp16=torch.cuda.is_available())
text = result['text'].strip()
print(rolling_output_text) # # If we detected a pause between recordings, add a new item to our transcription.
# # Otherwise edit the existing one.
# if phrase_complete:
# transcription.append(text)
# else:
# transcription[-1] += text
print(text)
pygame_text_surface = pygame_font.render(rolling_output_text, (0, 0, 0), (255, 255, 255)) # Update rolling transcription file.
pygame_text_rect = pygame_text_surface.get_rect() f = open("transcription.txt", "w+")
pygame_text_rect.center = (640, pygame_font_height) output_text = transcription[-4:]
pygame_text_rect.right = 1280 output_text.append(text)
pygame_display_surface.fill((0, 0, 0)) f.write(" ".join(output_text))
pygame_display_surface.blit(pygame_text_surface, pygame_text_rect) f.close()
pygame.display.update() if phrase_complete:
diffsize = abs(len(rolling_output_text) - len(rolling_text_target)) # Append to full transcription.
transcription.append(text)
# text += "\n"
# f = open("transcription.txt", "w+")
# f.write("\n".join(textwrap.wrap(text)))
# f.close()
print("* Phrase complete.")
audio_data = b''
# Clear the console to reprint the updated transcription.
# os.system('cls' if os.name=='nt' else 'clear')
for line in transcription:
print(line)
# Flush stdout.
print('', end='', flush=True)
else: else:
# Infinite loops are bad for processors, must sleep.
now = datetime.utcnow() sleep(0.01)
# Pull raw recorded audio from the queue.
if not data_queue.empty():
phrase_complete = False
# If enough time has passed between recordings, consider the phrase complete.
# Clear the current working audio buffer to start over with the new data.
#
# FIXME: Shouldn't we cut off the phrase here instead of
# waiting for later?
if phrase_time and now - phrase_time > timedelta(seconds=phrase_timeout):
phrase_complete = True
# This is the last time we received new audio data from the queue.
phrase_time = now
# Combine audio data from queue
audio_data += b''.join(data_queue.queue)
data_queue.queue.clear()
# Convert in-ram buffer to something the model can use directly without needing a temp file.
# Convert data from 16 bit wide integers to floating point with a width of 32 bits.
# Clamp the audio stream frequency to a PCM wavelength compatible default of 32768hz max.
audio_np = np.frombuffer(audio_data, dtype=np.int16).astype(np.float32) / 32768.0
# Run the transcription model, and extract the text.
result = audio_model.transcribe(audio_np, fp16=torch.cuda.is_available())
text = result['text'].strip()
# Update rolling transcription file.
# Start with all our recent-but-complete phrases.
output_text = transcription[-recent_phrase_count:]
# Append the phrase-in-progress. (TODO: Can we make this a
# different color or something?)
output_text.append(text)
# If we're done with the phrase, we can go ahead and stuff
# it into the list and clear out the current audio data
# buffer.
if phrase_complete:
# Append to full transcription.
if text != "":
transcription.append(text)
# Clear audio buffer.
audio_data = b''
# Infinite loops are bad for processors, must sleep. Also, limit the anim speed.
if diffsize > 30:
sleep(0.0025)
else:
sleep(0.0125)
except KeyboardInterrupt: except KeyboardInterrupt:
break break
print("\n\nTranscription:")
for line in transcription:
print(line)
if __name__ == "__main__": if __name__ == "__main__":
main() main()

View File

@ -1,264 +0,0 @@
#!/usr/bin/python3
# Recent phrases to include in the text buffer before the current transcription.
recent_phrase_count = 8
# Seconds of silence before we start a new phrase.
phrase_timeout = 1.0
# Higher is less restrictive on what it lets pass through.
no_speech_prob_threshold = 0.05 # 0.15
# Minimum number of seconds before we fire off the model again.
min_time_between_updates = 2
import numpy as np
import speech_recognition
import whisper
import torch
import wave
from datetime import datetime, timedelta
import json
import diffstuff
import threading
import time
from queue import Queue
_audio_model = whisper.load_model("medium.en") # "large"
_audio_model_mutex = threading.Lock()
# For debugging...
#wave_out = wave.open("wave.wav", "wb")
#wave_out.setnchannels(1)
#wave_out.setframerate(16000)
#wave_out.setsampwidth(2)
class Transcriber:
def __init__(self):
self._audio_source = None
# Audio data for the current phrase.
self._current_data = b''
self.phrases = [""]
self.scrolling_text = ""
# Time since the last data came in for the current phrase.
self._phrase_time = datetime.utcnow()
# Last time that we ran the model.
self._last_model_time = datetime.utcnow()
self._should_stop = False
self._phrases_list_mutex = threading.Lock()
self._update_thread = threading.Thread(
target=self._update_thread_func, daemon=True)
self._update_thread.start()
self.username = ""
self._audio_source_queue = Queue()
def stop(self):
self._should_stop = True
def set_source(self, source):
self._audio_source_queue.put(source)
def phrase_probably_silent(self):
"""Whisper hallucinates a LOT on silence, so let's just ignore stuff
that's mostly silence. First line of defense here."""
threshold = 100
threshold_pass = 0
threshold_fail = 0
avg = 0
for k in self._current_data:
avg += k
if(abs(k)) > threshold:
threshold_pass += 1
else:
threshold_fail += 1
avg = avg / len(self._current_data)
threshold_pct = threshold_pass / len(self._current_data)
if threshold_pct < 0.1:
return True
return False
def run_transcription_update(self):
#print("run_transcription_update Checking queue...")
# Switch to whatever the newest source is.
if self._audio_source == None and not self._audio_source_queue.empty():
self._audio_source = self._audio_source_queue.get()
if not self._audio_source:
#print("run_transcription_update returning early...")
return
now = datetime.utcnow()
if not self._audio_source.data_queue.empty():
# We got some new data. Let's process it!
# Get all the new data since last tick.
new_data = []
with self._audio_source._data_mutex:
while not self._audio_source.data_queue.empty():
new_packet = self._audio_source.data_queue.get()
new_data.append(new_packet)
new_data_joined = b''.join(new_data)
# For debugging...
#wave_out.writeframes(new_data_joined)
# Append it to the current buffer.
self._current_data = self._current_data + new_data_joined
# if self.phrase_probably_silent():
# with self._phrases_list_mutex:
# self.phrases[-1] = ""
# else:
# Convert in-ram buffer to something the model can use
# directly without needing a temp file. Convert data from 16
# bit wide integers to floating point with a width of 32
# bits. Clamp the audio stream frequency to a PCM wavelength
# compatible default of 32768hz max.
audio_np = np.frombuffer(
self._current_data[-16000 * 10:],
dtype=np.int16).astype(np.float32) / 32768.0
#print("run_transcription_update About to run transcription...")
# Run the transcription model, and extract the text.
with _audio_model_mutex:
#print("Transcribe start ", len(self._current_data))
result = _audio_model.transcribe(
audio_np, fp16=torch.cuda.is_available(),
word_timestamps=True,
hallucination_silence_threshold=2)
#print("Transcribe end")
self._last_model_time = now
with self._phrases_list_mutex:
wave_out = wave.open("tmp/wave%0.4d.wav" % len(self.phrases), "wb")
wave_out.setnchannels(1)
wave_out.setframerate(16000)
wave_out.setsampwidth(2)
wave_out.writeframes(self._current_data)
# Filter out text segments with a high no_speech_prob.
combined_text = ""
for seg in result["segments"]:
if seg["no_speech_prob"] <= no_speech_prob_threshold:
combined_text += seg["text"]
text = combined_text.strip()
# # FIXME:
text = result["text"]
with self._phrases_list_mutex:
self.phrases[-1] = text
#print("phrases: ", json.dumps(self.phrases, indent=4))
# Update phrase time at the end so waiting for the mutex doesn't
# cause us to split phrases.
self._phrase_time = now
# If enough time has passed between recordings, consider the
# last phrase complete and start a new one. Clear the current
# working audio buffer to start over with the new data.
if now - self._audio_source.time_of_last_input > timedelta(seconds=phrase_timeout):
# Only add a new phrase if we actually have data in the last
# one.
with self._phrases_list_mutex:
if self.phrases[-1] != "":
self.phrases.append("")
self._current_data = b''
# Automatically drop audio sources when we're finished with them.
if self._audio_source.is_done():
self._audio_source = None
def _update_thread_func(self):
while not self._should_stop:
time.sleep(0.1)
now = datetime.utcnow()
if self._last_model_time + timedelta(seconds=min_time_between_updates) < now:
self.run_transcription_update()
def update(self):
#print("update updating scrolling text...")
self.update_scrolling_text()
#print("update running transcription update...")
now = datetime.utcnow()
#if self._last_model_time + timedelta(seconds=min_time_between_updates) < now:
# self.run_transcription_update()
def update_scrolling_text(self):
#print("update_scrolling_text 1")
# Combine all the known phrases.
with self._phrases_list_mutex:
rolling_text_target = " ".join(self.phrases).strip()[-160:]
#print("update_scrolling_text 2")
if rolling_text_target != self.scrolling_text:
#print("update_scrolling_text 3")
# Start the diff off.
new_rolling_output_text = diffstuff.onestepchange(
self.scrolling_text, rolling_text_target)
#print("update_scrolling_text 4")
# Chop off the start all at once. It's not needed for the animation
# to look good.
#print("update_scrolling_text - ", self.scrolling_text)
#print("update_scrolling_text - ", new_rolling_output_text)
while self.scrolling_text.endswith(new_rolling_output_text):
#print("update_scrolling_text - start - ", self.scrolling_text)
#print("update_scrolling_text - end - ", new_rolling_output_text)
new_rolling_output_text = diffstuff.onestepchange(
new_rolling_output_text, rolling_text_target)
#print("update_scrolling_text 5")
# Set the new text.
self.scrolling_text = new_rolling_output_text
#print("update_scrolling_text 6")
# Just jump ahead if we're still too far behind.
# FIXME: Hardcoded value.
if diffstuff.countsteps(self.scrolling_text, rolling_text_target) > 80:
self.scrolling_text = rolling_text_target
#print("update_scrolling_text 7")
#print("%s: %s" % (self.username, self.scrolling_text))
#print("update_scrolling_text 8")
#print("update_scrolling_text done")