More refactoring. Opus now talking to Whisper.
This commit is contained in:
parent
25bc5d6663
commit
aed7f70815
176
audiosource.py
Normal file
176
audiosource.py
Normal file
@ -0,0 +1,176 @@
|
||||
#!/usr/bin/python3
|
||||
|
||||
import socket
|
||||
import select
|
||||
import time
|
||||
from queue import Queue
|
||||
import json
|
||||
import threading
|
||||
import speech_recognition
|
||||
import wave
|
||||
|
||||
from pyogg.opus_decoder import OpusDecoder
|
||||
|
||||
|
||||
class AudioSource:
|
||||
def __init__(self):
|
||||
# Thread safe Queue for passing data from the threaded recording
|
||||
# callback.
|
||||
self.data_queue = Queue()
|
||||
|
||||
def is_done(self):
|
||||
return True
|
||||
|
||||
|
||||
# -----------------------------------------------------------------------------
|
||||
# Microphone
|
||||
|
||||
# How real time the recording is in seconds.
|
||||
record_timeout = 2
|
||||
|
||||
class MicrophoneAudioSource(AudioSource):
|
||||
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
|
||||
self._recorder = speech_recognition.Recognizer()
|
||||
self._recorder.energy_threshold = 1200
|
||||
|
||||
# Definitely do this, dynamic energy compensation lowers the energy
|
||||
# threshold dramatically to a point where the SpeechRecognizer
|
||||
# never stops recording.
|
||||
self._recorder.dynamic_energy_threshold = False
|
||||
|
||||
self._source = speech_recognition.Microphone(sample_rate=16000)
|
||||
|
||||
|
||||
with self._source:
|
||||
self._recorder.adjust_for_ambient_noise(self._source)
|
||||
|
||||
def record_callback(_, audio:speech_recognition.AudioData) -> None:
|
||||
"""
|
||||
Threaded callback function to receive audio data when recordings finish.
|
||||
audio: An AudioData containing the recorded bytes.
|
||||
"""
|
||||
|
||||
# Grab the raw bytes and push it into the thread safe queue.
|
||||
data = audio.get_raw_data()
|
||||
self.data_queue.put(bytearray(data))
|
||||
|
||||
# Create a background thread that will pass us raw audio bytes.
|
||||
# We could do this manually but SpeechRecognizer provides a nice helper.
|
||||
self._stopper = self._recorder.listen_in_background(
|
||||
self._source, record_callback,
|
||||
phrase_time_limit=record_timeout)
|
||||
|
||||
def stop(self):
|
||||
assert(self._stopper)
|
||||
self._stopper()
|
||||
|
||||
self._recorder = None
|
||||
self._stopper = None
|
||||
self._source = None
|
||||
|
||||
def is_done(self):
|
||||
return self._recorder == None
|
||||
|
||||
# -----------------------------------------------------------------------------
|
||||
# Opus stream
|
||||
|
||||
# For debugging
|
||||
# wave_out = wave.open("wave2.wav", "wb")
|
||||
# wave_out.setnchannels(1)
|
||||
# wave_out.setframerate(16000)
|
||||
# wave_out.setsampwidth(2)
|
||||
|
||||
class OpusStreamAudioSource(AudioSource):
|
||||
|
||||
def __init__(self, sock):
|
||||
super().__init__()
|
||||
|
||||
self._socket = sock
|
||||
|
||||
self._opus_decoder = OpusDecoder()
|
||||
self._opus_decoder.set_channels(1)
|
||||
self._opus_decoder.set_sampling_frequency(16000)
|
||||
|
||||
# Fetch user info.
|
||||
user_info_tmp = self._read_packet(self._socket)
|
||||
self._user_info = json.loads(user_info_tmp.decode("utf-8"))
|
||||
print("User connection...")
|
||||
print(json.dumps(self._user_info, indent=4))
|
||||
|
||||
self._is_done = False
|
||||
|
||||
# Start input thread.
|
||||
self._input_thread = threading.Thread(
|
||||
target=self._input_thread_func, daemon=True)
|
||||
self._input_thread.start()
|
||||
|
||||
def _read_packet(self, sock):
|
||||
try:
|
||||
input_buffer = b''
|
||||
#print("Reading packet size...")
|
||||
while len(input_buffer) < 4:
|
||||
input_buffer = input_buffer + sock.recv(1)
|
||||
if not input_buffer:
|
||||
raise Exception("Failed to read size of packet.")
|
||||
|
||||
packet_size = int.from_bytes(input_buffer, "little")
|
||||
#print("Packet size: ", packet_size)
|
||||
|
||||
input_buffer = b''
|
||||
while len(input_buffer) < packet_size:
|
||||
input_buffer = input_buffer + sock.recv(1)
|
||||
if not input_buffer:
|
||||
raise Exception("Failed to read packet.")
|
||||
|
||||
return input_buffer
|
||||
|
||||
except Exception as e: # FIXME: Use socket-specific exception type.
|
||||
return None
|
||||
|
||||
def _input_thread_func(self):
|
||||
|
||||
print("input thread start")
|
||||
try:
|
||||
|
||||
while not self._is_done:
|
||||
|
||||
next_packet = self._read_packet(self._socket)
|
||||
|
||||
if next_packet:
|
||||
|
||||
# If we don't use bytearray here to copy, we run into a weird
|
||||
# exception about the memory not being writeable.
|
||||
decoded_data = self._opus_decoder.decode(bytearray(next_packet))
|
||||
|
||||
# For debugging.
|
||||
#wave_out.writeframes(decoded_data)
|
||||
|
||||
# We need to copy decoded_data here or we end up with
|
||||
# recycled buffers in our queue, which leads to broken
|
||||
# audio.
|
||||
self.data_queue.put(bytearray(decoded_data))
|
||||
|
||||
else:
|
||||
break
|
||||
|
||||
except Exception as e:
|
||||
# Probably disconnected. We don't care. Just clean up.
|
||||
# FIXME: Limit exception to socket errors.
|
||||
pass
|
||||
|
||||
print("input thread done")
|
||||
|
||||
self._is_done = True
|
||||
|
||||
def stop(self):
|
||||
self._is_done = True
|
||||
|
||||
# We won't join() the input thread because we don't want to sit around
|
||||
# and wait for a packet. It'll die on its own, so whatever.
|
||||
|
||||
def is_done(self):
|
||||
return self._is_done
|
||||
|
0
diffstuff.py
Normal file
0
diffstuff.py
Normal file
@ -1,9 +1,8 @@
|
||||
setuptools
|
||||
pyaudio
|
||||
SpeechRecognition
|
||||
--extra-index-url https://download.pytorch.org/whl/cu116
|
||||
--extra-index-url https://download.pytorch.org/whl/rocm6.2.4
|
||||
torch
|
||||
numpy
|
||||
git+https://github.com/openai/whisper.git
|
||||
|
||||
pygame
|
||||
git+https://github.com/TeamPyOgg/PyOgg.git@4118fc40067eb475468726c6bccf1242abfc24fc
|
@ -26,12 +26,17 @@ import pygame
|
||||
|
||||
import wave
|
||||
#from pyogg.opus import OpusEncoder
|
||||
from pyogg.opus_decoder import OpusDecoder
|
||||
|
||||
import socket
|
||||
import select
|
||||
import time
|
||||
import json
|
||||
import threading
|
||||
|
||||
|
||||
import diffstuff
|
||||
import audiosource
|
||||
from transcriber import Transcriber
|
||||
|
||||
pygame_font_height = 16
|
||||
pygame.init()
|
||||
@ -42,86 +47,6 @@ pygame_font = pygame.font.Font("/home/kiri/.fonts/Sigmar-Regular.ttf", pygame_fo
|
||||
|
||||
|
||||
|
||||
class AudioSource:
|
||||
def __init__(self):
|
||||
# Thread safe Queue for passing data from the threaded recording callback.
|
||||
self.data_queue = Queue()
|
||||
|
||||
def is_done(self):
|
||||
return True
|
||||
|
||||
class MicrophoneAudioSource(AudioSource):
|
||||
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
|
||||
self._recorder = None
|
||||
self._stopper = None
|
||||
|
||||
def start(self):
|
||||
assert(self._recorder == None)
|
||||
|
||||
self._recorder = speech_recognition.Recognizer()
|
||||
self._recorder.energy_threshold = 1200
|
||||
|
||||
# Definitely do this, dynamic energy compensation lowers the energy
|
||||
# threshold dramatically to a point where the SpeechRecognizer
|
||||
# never stops recording.
|
||||
self._recorder.dynamic_energy_threshold = False
|
||||
|
||||
self._source = speech_recognition.Microphone(sample_rate=16000)
|
||||
|
||||
|
||||
with self._source:
|
||||
self._recorder.adjust_for_ambient_noise(self._source)
|
||||
|
||||
def record_callback(_, audio:speech_recognition.AudioData) -> None:
|
||||
"""
|
||||
Threaded callback function to receive audio data when recordings finish.
|
||||
audio: An AudioData containing the recorded bytes.
|
||||
"""
|
||||
|
||||
# Grab the raw bytes and push it into the thread safe queue.
|
||||
data = audio.get_raw_data()
|
||||
self.data_queue.put(data)
|
||||
|
||||
# Create a background thread that will pass us raw audio bytes.
|
||||
# We could do this manually but SpeechRecognizer provides a nice helper.
|
||||
self._stopper = self._recorder.listen_in_background(
|
||||
self._source, record_callback,
|
||||
phrase_time_limit=record_timeout)
|
||||
|
||||
def stop(self):
|
||||
assert(self._stopper)
|
||||
self._stopper()
|
||||
|
||||
self._recorder = None
|
||||
self._stopper = None
|
||||
self._source = None
|
||||
|
||||
def is_done(self):
|
||||
return False
|
||||
|
||||
class OpusStreamAudioSource(AudioSource):
|
||||
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
|
||||
def start(self):
|
||||
self.opus_decoder = OpusDecoder()
|
||||
self.opus_decoder.set_channels(1)
|
||||
self.opus_decoder.set_sampling_frequency(16000)
|
||||
|
||||
|
||||
|
||||
def stop(self):
|
||||
pass
|
||||
|
||||
|
||||
def is_done(self):
|
||||
return False
|
||||
|
||||
|
||||
opus_server_socket = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
|
||||
print("binding")
|
||||
opus_server_socket.bind(("127.0.0.1", 9967))
|
||||
@ -131,35 +56,14 @@ print("listening")
|
||||
opus_server_socket.listen()
|
||||
|
||||
|
||||
def read_packet(sock):
|
||||
try:
|
||||
input_buffer = b''
|
||||
print("Reading packet size...")
|
||||
while len(input_buffer) < 4:
|
||||
input_buffer = input_buffer + sock.recv(1)
|
||||
if not input_buffer:
|
||||
raise Exception("Failed to read size of packet.")
|
||||
|
||||
packet_size = int.from_bytes(input_buffer, "little")
|
||||
print("Packet size: ", packet_size)
|
||||
|
||||
input_buffer = b''
|
||||
while len(input_buffer) < packet_size:
|
||||
input_buffer = input_buffer + sock.recv(1)
|
||||
if not input_buffer:
|
||||
raise Exception("Failed to read packet.")
|
||||
|
||||
return input_buffer
|
||||
|
||||
except Exception as e: # FIXME: Use socket-specific exception type.
|
||||
return None
|
||||
|
||||
|
||||
wave_out = wave.open("wave.wav", "wb")
|
||||
wave_out.setnchannels(1)
|
||||
wave_out.setframerate(16000)
|
||||
wave_out.setsampwidth(2)
|
||||
|
||||
transcriber = Transcriber()
|
||||
mic_source = audiosource.MicrophoneAudioSource()
|
||||
|
||||
while True:
|
||||
print("looping")
|
||||
|
||||
@ -172,58 +76,18 @@ while True:
|
||||
print(accepted_socket)
|
||||
break
|
||||
|
||||
# Fetch user info.
|
||||
user_info = read_packet(accepted_socket)
|
||||
user_info = json.loads(user_info.decode("utf-8"))
|
||||
print("User connection...")
|
||||
print(json.dumps(user_info, indent=4))
|
||||
opusSource = audiosource.OpusStreamAudioSource(accepted_socket)
|
||||
|
||||
# Fire up decoder.
|
||||
opus_decoder = OpusDecoder()
|
||||
print(dir(opus_decoder))
|
||||
opus_decoder.set_channels(1)
|
||||
opus_decoder.set_sampling_frequency(16000)
|
||||
|
||||
# Receive data.
|
||||
while True:
|
||||
next_packet = read_packet(accepted_socket)
|
||||
#print("got packet: ", next_packet)
|
||||
|
||||
if next_packet:
|
||||
# If we don't use bytearray here to copy, we run into a weird
|
||||
# exception about the memory not being writeable.
|
||||
decoded_data = opus_decoder.decode(bytearray(next_packet))
|
||||
print(decoded_data)
|
||||
wave_out.writeframes(decoded_data)
|
||||
else:
|
||||
print("DONE I THINK")
|
||||
|
||||
if not next_packet:
|
||||
break
|
||||
#b = accepted_socket.recv(32)
|
||||
#print(b)
|
||||
#if not b:
|
||||
# break
|
||||
transcriber.set_source(opusSource)
|
||||
while not opusSource.is_done():
|
||||
time.sleep(0.1)
|
||||
transcriber.update()
|
||||
|
||||
|
||||
exit(0)
|
||||
|
||||
|
||||
|
||||
# while True:
|
||||
# pygame_text_surface = pygame_font.render("Test test test", (0, 0, 0), (255, 255, 255))
|
||||
# pygame_text_rect = pygame_text_surface.get_rect()
|
||||
# pygame_text_rect.center = (640, 32)
|
||||
# pygame_display_surface.fill((0, 0, 0))
|
||||
# pygame_display_surface.blit(pygame_text_surface, pygame_text_rect)
|
||||
|
||||
# for event in pygame.event.get():
|
||||
# if event.type == pygame.QUIT:
|
||||
# pygame.quit()
|
||||
|
||||
# pygame.display.update()
|
||||
|
||||
# exit(0)
|
||||
|
||||
def onestepchange(start, dest):
|
||||
|
||||
|
65
transcriber.py
Normal file
65
transcriber.py
Normal file
@ -0,0 +1,65 @@
|
||||
#!/usr/bin/python3
|
||||
|
||||
import numpy as np
|
||||
import speech_recognition
|
||||
import whisper
|
||||
import torch
|
||||
import wave
|
||||
|
||||
_audio_model = whisper.load_model("medium.en") # "large"
|
||||
|
||||
# For debugging...
|
||||
# wave_out = wave.open("wave.wav", "wb")
|
||||
# wave_out.setnchannels(1)
|
||||
# wave_out.setframerate(16000)
|
||||
# wave_out.setsampwidth(2)
|
||||
|
||||
class Transcriber:
|
||||
|
||||
def __init__(self):
|
||||
self._audio_source = None
|
||||
|
||||
# Audio data for the current phrase.
|
||||
self._current_data = b''
|
||||
|
||||
def set_source(self, source):
|
||||
self._audio_source = source
|
||||
|
||||
def update(self):
|
||||
|
||||
if self._audio_source:
|
||||
|
||||
if not self._audio_source.data_queue.empty():
|
||||
|
||||
# We got some new data. Let's process it!
|
||||
new_data = []
|
||||
while not self._audio_source.data_queue.empty():
|
||||
new_packet = self._audio_source.data_queue.get()
|
||||
new_data.append(new_packet)
|
||||
|
||||
new_data_joined = b''.join(new_data)
|
||||
|
||||
# For debugging...
|
||||
#wave_out.writeframes(new_data_joined)
|
||||
|
||||
self._current_data = self._current_data + new_data_joined
|
||||
|
||||
# Convert in-ram buffer to something the model can use
|
||||
# directly without needing a temp file. Convert data from 16
|
||||
# bit wide integers to floating point with a width of 32
|
||||
# bits. Clamp the audio stream frequency to a PCM wavelength
|
||||
# compatible default of 32768hz max.
|
||||
audio_np = np.frombuffer(
|
||||
self._current_data, dtype=np.int16).astype(np.float32) / 32768.0
|
||||
|
||||
# Run the transcription model, and extract the text.
|
||||
result = _audio_model.transcribe(
|
||||
audio_np, fp16=torch.cuda.is_available())
|
||||
|
||||
text = result['text'].strip()
|
||||
|
||||
print("text now: ", text)
|
||||
|
||||
# Automatically drop audio sources when we're finished with them.
|
||||
if self._audio_source.is_done():
|
||||
self._audio_source = None
|
Loading…
Reference in New Issue
Block a user