More refactoring.
This commit is contained in:
parent
aed7f70815
commit
9a16c371f8
34
README.md
34
README.md
@ -1,34 +0,0 @@
|
||||
# Real Time Whisper Transcription
|
||||
|
||||

|
||||
|
||||
This is a demo of real time speech to text with OpenAI's Whisper model. It works by constantly recording audio in a thread and concatenating the raw bytes over multiple recordings.
|
||||
|
||||
To install dependencies simply run
|
||||
```
|
||||
pip install -r requirements.txt
|
||||
```
|
||||
in an environment of your choosing.
|
||||
|
||||
Whisper also requires the command-line tool [`ffmpeg`](https://ffmpeg.org/) to be installed on your system, which is available from most package managers:
|
||||
|
||||
```
|
||||
# on Ubuntu or Debian
|
||||
sudo apt update && sudo apt install ffmpeg
|
||||
|
||||
# on Arch Linux
|
||||
sudo pacman -S ffmpeg
|
||||
|
||||
# on MacOS using Homebrew (https://brew.sh/)
|
||||
brew install ffmpeg
|
||||
|
||||
# on Windows using Chocolatey (https://chocolatey.org/)
|
||||
choco install ffmpeg
|
||||
|
||||
# on Windows using Scoop (https://scoop.sh/)
|
||||
scoop install ffmpeg
|
||||
```
|
||||
|
||||
For more information on Whisper please see https://github.com/openai/whisper
|
||||
|
||||
The code in this repository is public domain.
|
33
diffstuff.py
33
diffstuff.py
@ -0,0 +1,33 @@
|
||||
import textwrap
|
||||
import difflib
|
||||
|
||||
def onestepchange(start, dest):
|
||||
|
||||
ret = ""
|
||||
|
||||
for i, s in enumerate(difflib.ndiff(start, dest)):
|
||||
# print(i)
|
||||
# print(s)
|
||||
|
||||
if s[0] == '-':
|
||||
return ret + start[i+1:]
|
||||
|
||||
if s[1] == '+':
|
||||
return ret + s[-1] + start[i:]
|
||||
|
||||
ret = ret + s[-1]
|
||||
|
||||
if len(ret) > len(start):
|
||||
return ret
|
||||
|
||||
if ret[i] != start[i]:
|
||||
return ret + start[i:]
|
||||
|
||||
return ret
|
||||
|
||||
def countsteps(start, dest):
|
||||
step_count = 0
|
||||
while start != dest:
|
||||
start = onestepchange(start, dest)
|
||||
step_count += 1
|
||||
return step_count
|
44
difftest.py
44
difftest.py
@ -1,44 +0,0 @@
|
||||
import difflib
|
||||
|
||||
s1 = "1234asdffooMOO"
|
||||
s2 = "asdfbarMOOwhatever"
|
||||
|
||||
# s1 = "asdffoo"
|
||||
# s2 = "asdffooMOO"
|
||||
|
||||
def onestepchange(start, dest):
|
||||
|
||||
ret = ""
|
||||
|
||||
for i, s in enumerate(difflib.ndiff(start, dest)):
|
||||
# print(i)
|
||||
# print(s)
|
||||
|
||||
if s[0] == '-':
|
||||
return ret + start[i+1:]
|
||||
|
||||
if s[1] == '+':
|
||||
return ret + s[-1] + start[i:]
|
||||
|
||||
ret = ret + s[-1]
|
||||
|
||||
if len(ret) > len(start):
|
||||
return ret
|
||||
|
||||
if ret[i] != start[i]:
|
||||
return ret + start[i:]
|
||||
|
||||
return ret
|
||||
|
||||
|
||||
n = s1
|
||||
while n != s2:
|
||||
print(n)
|
||||
n = onestepchange(n, s2)
|
||||
|
||||
print(n)
|
||||
|
||||
# for i, s in enumerate(difflib.ndiff(s1, s2)):
|
||||
# print(i)
|
||||
# print(s)
|
||||
|
@ -1 +0,0 @@
|
||||
whisper-live tokenizers==0.20.3
|
@ -1,8 +0,0 @@
|
||||
setuptools
|
||||
pyaudio
|
||||
SpeechRecognition
|
||||
--extra-index-url https://download.pytorch.org/whl/rocm6.2.4
|
||||
torch
|
||||
numpy
|
||||
git+https://github.com/openai/whisper.git
|
||||
git+https://github.com/TeamPyOgg/PyOgg.git@4118fc40067eb475468726c6bccf1242abfc24fc
|
@ -19,8 +19,6 @@ from queue import Queue
|
||||
from time import sleep
|
||||
from sys import platform
|
||||
|
||||
import textwrap
|
||||
import difflib
|
||||
|
||||
import pygame
|
||||
|
||||
@ -89,36 +87,7 @@ exit(0)
|
||||
|
||||
|
||||
|
||||
def onestepchange(start, dest):
|
||||
|
||||
ret = ""
|
||||
|
||||
for i, s in enumerate(difflib.ndiff(start, dest)):
|
||||
# print(i)
|
||||
# print(s)
|
||||
|
||||
if s[0] == '-':
|
||||
return ret + start[i+1:]
|
||||
|
||||
if s[1] == '+':
|
||||
return ret + s[-1] + start[i:]
|
||||
|
||||
ret = ret + s[-1]
|
||||
|
||||
if len(ret) > len(start):
|
||||
return ret
|
||||
|
||||
if ret[i] != start[i]:
|
||||
return ret + start[i:]
|
||||
|
||||
return ret
|
||||
|
||||
def countsteps(start, dest):
|
||||
step_count = 0
|
||||
while start != dest:
|
||||
start = onestepchange(start, dest)
|
||||
step_count += 1
|
||||
return step_count
|
||||
|
||||
def main():
|
||||
parser = argparse.ArgumentParser()
|
||||
|
@ -1,10 +1,19 @@
|
||||
#!/usr/bin/python3
|
||||
|
||||
# Recent phrases to include in the text buffer before the current transcription.
|
||||
recent_phrase_count = 8
|
||||
|
||||
# Seconds of silence before we start a new phrase.
|
||||
phrase_timeout = 3
|
||||
|
||||
|
||||
import numpy as np
|
||||
import speech_recognition
|
||||
import whisper
|
||||
import torch
|
||||
import wave
|
||||
from datetime import datetime, timedelta
|
||||
import json
|
||||
|
||||
_audio_model = whisper.load_model("medium.en") # "large"
|
||||
|
||||
@ -22,43 +31,95 @@ class Transcriber:
|
||||
# Audio data for the current phrase.
|
||||
self._current_data = b''
|
||||
|
||||
self.phrases = [""]
|
||||
|
||||
self._phrase_time = datetime.utcnow()
|
||||
|
||||
def set_source(self, source):
|
||||
self._audio_source = source
|
||||
|
||||
def phrase_probably_silent(self):
|
||||
"""Whisper hallucinates a LOT on silence, so let's just ignore stuff
|
||||
that's mostly silence."""
|
||||
|
||||
threshold = 100
|
||||
threshold_pass = 0
|
||||
threshold_fail = 0
|
||||
avg = 0
|
||||
for k in self._current_data:
|
||||
avg += k
|
||||
if(abs(k)) > threshold:
|
||||
threshold_pass += 1
|
||||
else:
|
||||
threshold_fail += 1
|
||||
|
||||
avg = avg / len(self._current_data)
|
||||
threshold_pct = threshold_pass / len(self._current_data)
|
||||
print("threshold_pct: ", threshold_pct)
|
||||
print("avg: ", avg)
|
||||
|
||||
if threshold_pct < 0.1:
|
||||
return True
|
||||
|
||||
return False
|
||||
|
||||
def update(self):
|
||||
|
||||
now = datetime.utcnow()
|
||||
|
||||
if self._audio_source:
|
||||
|
||||
if not self._audio_source.data_queue.empty():
|
||||
|
||||
# We got some new data. Let's process it!
|
||||
|
||||
# If enough time has passed between recordings, consider the
|
||||
# last phrase complete and start a new one. Clear the current
|
||||
# working audio buffer to start over with the new data.
|
||||
if self._phrase_time and now - self._phrase_time > timedelta(seconds=phrase_timeout):
|
||||
# TODO: Append stats to the end for debugging so we can keep
|
||||
# tracking down the hallucinations.
|
||||
if self.phrases[-1] != "":
|
||||
self.phrases.append("")
|
||||
self._current_data = b''
|
||||
|
||||
self._phrase_time = now
|
||||
|
||||
# Get all the new data since last tick,
|
||||
new_data = []
|
||||
while not self._audio_source.data_queue.empty():
|
||||
new_packet = self._audio_source.data_queue.get()
|
||||
new_data.append(new_packet)
|
||||
|
||||
new_data_joined = b''.join(new_data)
|
||||
|
||||
# For debugging...
|
||||
#wave_out.writeframes(new_data_joined)
|
||||
|
||||
# Append it to the current buffer.
|
||||
self._current_data = self._current_data + new_data_joined
|
||||
|
||||
# Convert in-ram buffer to something the model can use
|
||||
# directly without needing a temp file. Convert data from 16
|
||||
# bit wide integers to floating point with a width of 32
|
||||
# bits. Clamp the audio stream frequency to a PCM wavelength
|
||||
# compatible default of 32768hz max.
|
||||
audio_np = np.frombuffer(
|
||||
self._current_data, dtype=np.int16).astype(np.float32) / 32768.0
|
||||
if self.phrase_probably_silent():
|
||||
self.phrases[-1] = ""
|
||||
else:
|
||||
|
||||
# Run the transcription model, and extract the text.
|
||||
result = _audio_model.transcribe(
|
||||
audio_np, fp16=torch.cuda.is_available())
|
||||
# Convert in-ram buffer to something the model can use
|
||||
# directly without needing a temp file. Convert data from 16
|
||||
# bit wide integers to floating point with a width of 32
|
||||
# bits. Clamp the audio stream frequency to a PCM wavelength
|
||||
# compatible default of 32768hz max.
|
||||
audio_np = np.frombuffer(
|
||||
self._current_data, dtype=np.int16).astype(np.float32) / 32768.0
|
||||
|
||||
text = result['text'].strip()
|
||||
# Run the transcription model, and extract the text.
|
||||
result = _audio_model.transcribe(
|
||||
audio_np, fp16=torch.cuda.is_available())
|
||||
|
||||
text = result['text'].strip()
|
||||
|
||||
self.phrases[-1] = text
|
||||
|
||||
print("phrases: ", json.dumps(self.phrases, indent=4))
|
||||
|
||||
print("text now: ", text)
|
||||
|
||||
# Automatically drop audio sources when we're finished with them.
|
||||
if self._audio_source.is_done():
|
||||
|
Loading…
Reference in New Issue
Block a user